

Description		
Sensor	SAMS 121f05 500.0 sa/sec, 200.0 Hz	
Location	COL Endcone	
Plot Type	Spectrogram	
 Notes: This plot serves as good overview of events leading up to the reboost. Note that below 10 Hz, the typical dominant disturbances are identified as the Ku-band antenna, crew exercise, and vehicle structural modes. In this spectrogram, we also highlight the spectral impact of the Urine Processing Assembly (UPA), the crew sleep period 		

Regime:	Vibratory
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

Sensor	
Location	
Plot Type	
LocationLAB1O2, ER1, Lockers 3,4Plot TypeXYZ Accel. vs. TimeNotes:••The primary objective of a reboost is to impart a "delta-V" in the forward direction of flight.•This plot of very low frequency, quasi- steady, data measured by MAMS shows the salient feature.•During the reboost, there is a relatively large step in the +XA-direction (forward flight direction) as seen on this plot.•MAMS gives us the most accurate indication of the quasi-steady regime, so we show this plot for completeness.•The red text shows the step was about 160 ug as seen on the X-axis.•The main metric that flight controllers track for reboost is the so-called "delta-V", which MAMS registered as 1.02 m/s. This increase in velocity in the flight direction boosts the space station's altitude.	

Regime:	Quasi-Steady
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

mams, ossbtmf at LAB1O2, ER1, Lockers 3,4:[135.28 -10.68 132.12] SSAnalysis[0.0 0.0 0.0] 0.0625 sa/sec (0.01 Hz) mams_accel_ossbtmf, LAB1O2, ER1, Lockers 3,4, 0.0 Hz (0.1 s/sec) ΔV = ((162.5*1e-6*9.81)*10.67*60) = 1.02 m/s Start GMT 17-February-2016, 048/10:00:00 0.4 X-Axis Acceleration (mg) Mean = 162.5 µg -0.4 0.4 0.3

ation (mg) 0.2 0.1 Acceler 0 -0.1 Y-Axis -0.2 -0.3 -0.4 0.4 0.3 Acceleration (mg) 0.2 0.1 0 -0.1 Z-Axis -0.2 -0.3 -0.4 10:00 10:20 10:44 10:55 11:20 11:40 12:00 GMT 17-February-2016, 048/hh:mm

Glenn Research Center

Description		
Sensor	SAMS 121f05 500.0 sa/sec, 200.0 Hz	
Location	COL Endcone	
Plot Type	Interval Average	
 The SAMS sensors are not intended to give us high fidelity in the quasi-steady regime. SAMS sensors are typically specified with a pass-band (nominally) of 0.01 Hz to 200 Hz. For curiosity and comparison sake, we plot the SAMS SE-F05 data recorded on the Columbus starboard endcone in the form of an interval average (every 10s). From this interval average plot, we can see 2 main features in the SAMS SE-F05 data: A notable step on the XA-axis in the 		
MA 2. Step s valu • The negativ data is due	MS showed us). size of about 170 ug (close to the e registered by MAMS). ve direction for the step in SAMS to the fact that you have to invert	
SAMS pola directional	arity on all 3 axes to get the proper ity.	

Regime:	Quasi-Steady
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

1000 sa/sec (200.00 Hz) SAN	1S2, 121f05, COL, Starboard End	lcone, Adapter Bracket,	200.0 Hz (500.0 s	/sec) SSAnalysis[0.0 0 Interval A Size: 10.00, Step: 10.
	∆V = ((-170.4*1e-6*9.81)*10	.00*60) = -1.00 m/s		
Start GMT 17-February-2016, 048/10:00:00				
0.2 -				
0				
	, in the second s			
_0 17 _	hallinging	Mean = –170.4 μg		
-0.17	h Abdaka da a			
-0.4				
0.4				
0.4				
0.2 -				
0				••••••••••
-0.2 -				
-0.4 -	i i			
0.4	L I	L	L	
0.2				
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
0 -	and a second	mmmp	*****	*
-0.2 -				
-0.4				
10:00 10	:20 10:44 10:	55 11	20 11	:40 12:

Description		
Sensor	SAMS 121f03 500.0 sa/sec, 200.0 Hz	
Location	LAB1O1, ER2, Lower Z Panel	
Plot Type	Interval Average	
 Notes: This plot is identical to the previous page except we use SAMS SE-F03 data measured in the USL. Again, this is not the best way to quantify the quasi-steady impact of a reboost, but we show this for comparison and completeness. 		

Regime:	Quasi-Steady
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

SAMS2, 121f03, LAB1O1, ER2, Lower Z Panel, 200.0 Hz (500.0 s/sec)

sams2, 121f03 at LAB1O1, ER2, Lower Z Panel:[191.54 -40.54 135.25]

0.1000 sa/sec (200.00 Hz)

SSAnalysis[0.0 0.0 0.0] Interval Average

Glenn Research Center

Description		
Sensor	SAMS 121f05 500.0 sa/sec, 200.0 Hz	
Location	COL Endcone	
Plot Type XYZ Accel. vs. Time		
 This 3-panel plot shows as-measured SAMS SE-F05 data up to the cut-off frequency (200 Hz) of the sensor. It shows the same span as the previous 2 plots, and has the same time-axis labels. The quasi-steady nature of a reboost is totally obscured by much higher frequency disturbances. We do note that the XA-axis has overall larger peak-to-peak acceleration values and 		

Regime:	Vibratory
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

sams2, 121f05 at COL, Starboard Endcone, Adapter Bracket:[378.90 320.60 233.90]

analog 1 no s 4 000 Hz (2000 Hz) (20

Progress 61P Reboost 2016-02-17 Quantify

Description		
Sensor	SAMS 121f05 500.0 sa/sec, 200.0 Hz	
Location	COL Endcone	
Plot Type	Power Spectral Density	
 Notes: This plot of power spectral densities shows via boxed annotations where the largest spectral contributor was during this 2-hour span. The XY-plane was experiencing mostly a narrowband disturbance at about 141.7 Hz. The Z-axis was dominated by a spectral peak at about 0.6 Hz – this is most likely a structural mode 		

Regime:	Vibratory
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

