Description

Description	
Sensor	SAMS 121f05 500.0 sa/sec, 200.0 Hz
Location	COL Endcone
Plot Type	Spectrogram

Notes:

- This plot serves as good overview of events leading up to the reboost.
- Note that below 10 Hz , the typical dominant disturbances are identified as the Ku-band antenna, crew exercise, and vehicle structural modes.
- In this spectrogram, we also highlight the spectral impact of the Urine Processing Assembly (UPA), the crew sleep period (quieting), and Russian attitude control.

Regime:	Vibratory
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

Description	
Sensor	MAMS ossbtmf $0.0625 ~ s a / s e c, ~$
Location	LAB1O2, ER1, Lockers 3,4
Plot Type	XYZ Accel. vs. Time

Notes:

- The primary objective of a reboost is to impart a "delta- V " in the forward direction of flight.
- This plot of very low frequency, quasisteady, data measured by MAMS shows the salient feature.
- During the reboost, there is a relatively large step in the +XA-direction (forward flight direction) as seen on this plot.
- MAMS gives us the most accurate indication of the quasi-steady regime, so we show this plot for completeness.
- The red text shows the step was about 160 ug as seen on the X -axis.
- The main metric that flight controllers track for reboost is the so-called "delta-V", which MAMS registered as $1.02 \mathrm{~m} / \mathrm{s}$. This increase in velocity in the flight direction boosts the space station's altitude.

Regime:	Quasi-Steady
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

$\Delta V=\left(\left(-170.4^{*} 1 \mathrm{e}-6^{*} 9.81\right)^{*} 10.00^{*} 60\right)=-1.00 \mathrm{~m} / \mathrm{s}$ Size: 10.00, Step: 10.00 see.

Regime:	Quasi-Steady
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

Progress 61P Reboost 2016-02-17
Quantify

Description	
Sensor	SAMS 121f03 $500.0 ~ s a / s e c, ~ 200.0 ~ H z ~$
Location	LAB1O1, ER2, Lower Z Panel
Plot Type	Interval Average

Notes:

- This plot is identical to the previous page except we use SAMS SE-F03 data measured in the USL.
- Again, this is not the best way to quantify the quasi-steady impact of a reboost, but we show this for comparison and completeness.

Regime:	Quasi-Steady
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

Progress 61P Reboost 2016-02-17

Quantify

Description

Description	
Sensor	SAMS 121f05 $500.0 \mathrm{sa} / \mathrm{sec}, 200.0 \mathrm{~Hz}$
Location	COL Endcone
Plot Type	XYZ Accel. vs. Time

Notes:

- This 3-panel plot shows as-measured SAMS SE-F05 data up to the cut-off frequency (200 Hz) of the sensor
- It shows the same span as the previous 2 plots, and has the same time-axis labels.
- The quasi-steady nature of a reboost is totally obscured by much higher frequency disturbances.
- We do note that the XA-axis has overal larger peak-to-peak acceleration values and we further identify that on the next page.

Regime:	Vibratory
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

Progress 61P Reboost 2016-02-17

Quantify

Description	
Sensor	SAMS 121f05 500.0 sa/sec, 200.0 Hz
Location	COL Endcone
Plot Type	Power Spectral Density

Notes:

- This plot of power spectral densities shows via boxed annotations where the largest spectral contributor was during this 2-hour span.
- The XY-plane was experiencing mostly a narrowband disturbance at about 141.7 Hz
- The Z-axis was dominated by a spectral peak at about 0.6 Hz - this is most likely a structural mode.

Regime:	Vibratory
Category:	Vehicle
Source:	Progress 61P Reboost 2016-02-17

